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We consider numerically the transition to turbulence and associated mixing in stratified
shear flows with initial velocity distribution U(z, 0) ex = U0 ex tanh(z/d) and initial
density distribution ρ(z, 0) = ρ0[1 − tanh(z/δ)] away from a hydrostatic reference
state ρr� ρ0. When the ratio R= d/δ of the characteristic length scales over which
the velocity and density vary is equal to one, this flow is primarily susceptible to
the classic well-known Kelvin–Helmholtz instability (KHI). This instability, which
typically manifests at finite amplitude as an array of elliptical vortices, strongly
‘overturns’ the density interface of strong initial gradient, which nevertheless is the
location of minimum initial gradient Richardson number Rig(0) = Rib = gρ0d/ρrU2

0 ,
where Rig(z) = −([g/ρr] dρ/dz)/(dU/dz)2 and Rib is a bulk Richardson number. As
is well known, at sufficiently high Reynolds numbers (Re), the primary KHI induces
a vigorous but inherently transient burst of turbulence and associated irreversible
mixing localised in the vicinity of the density interface, leading to a relatively
well-mixed region bounded by stronger density gradients above and below. We
explore the qualitatively different behaviour that arises when R � 1, and so the
density interface is sharp, with Rig(z) now being maximum at the density interface
Rig(0)= RRib. This flow is primarily susceptible to Holmboe wave instability (HWI)
(Holmboe, Geophys. Publ., vol. 24, 1962, pp. 67–113), which manifests at finite
amplitude in this symmetric flow as counter-propagating trains of elliptical vortices
above and below the density interface, thus perturbing the interface so as to exhibit
characteristically cusped interfacial waves which thereby ‘scour’ the density interface.
Unlike previous lower-Re experimental and numerical studies, when Re is sufficiently
high the primary HWI becomes increasingly more three-dimensional due to the
emergence of shear-aligned secondary convective instabilities. As Re increases, (i) the
growth rate of secondary instabilities appears to saturate and (ii) the perturbation
kinetic energy exhibits a k−5/3 spectrum for sufficiently large length scales that
are influenced by anisotropic buoyancy effects. Therefore, at sufficiently high Re,
vigorous turbulence is triggered that also significantly ‘scours’ the primary density
interface, leading to substantial irreversible mixing and vertical transport of mass
above and below the (robust) primary density interface. Furthermore, HWI produces
a markedly more long-lived turbulence event compared to KHI at a similarly high
Re. Despite their vastly different mechanics (i.e. ‘overturning’ versus ‘scouring’) and
localisation, the mixing induced byKHI and HWI is comparable in both absolute
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terms and relative efficiency. Our results establish that, provided the flow Reynolds
number is sufficiently high, shear layers with sharp density interfaces and associated
locally high values of the gradient Richardson number may still be sites of substantial
and efficient irreversible mixing.

Key words: mixing and dispersion, stratified turbulence, wave breaking

1. Introduction
Stably stratified parallel shear flows, in which both the background velocity and

density distribution vary with height, are very common in the natural environment,
and understanding how they become turbulent and irreversibly mix the density field
is of central importance to modelling the fate and transport of momentum, heat and
chemical species. There exists a substantial body of research into the dynamics of
such flows (see e.g. the reviews of Peltier & Caulfield (2003) and Ivey, Winters &
Koseff (2008)), with much of it focusing on the mixing triggered by the breakdown
to turbulence of primary shear instabilities of the initial laminar flow.

A commonly considered model problem is the hyperbolic tangent stratified shear
layer, where the base velocity and density distributions are represented in dimensional
form as

U(z, 0) ex =U0 tanh
( z

d

)
ex, (1.1)

ρ(z, 0)= ρ0

[
1− tanh

( z
δ

)]
, (1.2)

where U0 =1U/2 and ρ0 =1ρ/2, respectively, denote half the velocity and density
jump across the interface and ex is the unit vector in the streamwise x-direction. Note
that the density field employed in this paper represents departures from a hydrostatic
state that is associated with a constant reference density ρr. In addition, ρr � ρ0
such that the Boussinesq approximation is valid. The linear stability of this flow is
characterised by a bulk Richardson number Rib, the thickness ratio of shear to density
interfaces R, the Reynolds number Re and the Prandtl number Pr, defined as

Rib = gρ0d
ρrU2

0
, R= d

δ
, Re= U0d

ν
, Pr= ν

κ
, (1.3a−d)

where g is the acceleration due to gravity, ν is the kinematic viscosity and κ is the
molecular diffusivity of the density field.

When the ratio R = d/δ = 1, the gradient Richardson number, Rig(z), increases
monotonically from its minimum value Rig(0)= Rib at the midpoint of the stratified
shear layer. For sufficiently small values of Rib, and large enough values of Re, this
flow is susceptible to the classic Kelvin–Helmholtz instability (KHI), an inviscid
instability whose growth rate is decreased monotonically by ambient stratification.
This instability manifests itself at finite amplitude as an array of elliptical vortices
or billows which ‘roll up’ or ‘overturn’ the primary density interface. Although the
KHI has long been considered a key mechanism by which turbulence is triggered
and through which irreversible mixing occurs in stratified flows, it has only recently
been appreciated that both the character of the transition and ensuing mixing are
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profoundly modified for Re & 4000 (defined as in (1.3)) (Mashayek & Peltier 2013;
Mashayek, Caulfield & Peltier 2013) and when the Prandtl number Pr is increased
from O(1) characteristic of gases to O(10) characteristic of liquids such as water
(Salehipour, Peltier & Mashayek 2015).

Indeed, for fluids with Pr 6= 1, as argued in Smyth, Klaassen & Peltier (1988), it is
perhaps more natural to consider the stability of flows with length scale ratio R=√Pr.
For such flows, with a ‘sharp’ density interface embedded within a broader shear
layer, the stability properties are qualitatively different, as Rig(z) now is maximum
at the midpoint of the shear layer Rig(0) = RRib for sufficiently large values of
R, and drops to small values as |z| increases (Smyth & Winters 2003; Alexakis
2005). Therefore, for sufficiently large values of Rib, the flow becomes unstable to
an inherently stratified instability, which we shall refer to as the Holmboe wave
instability (HWI), originally identified by Holmboe (1962). At finite amplitude, the
(symmetric) HWI develops into propagating elliptical vortical patches above and
below the density interface, which induce characteristically cusped waves on the
density interface itself.

Current understanding of the nonlinear behaviour of this instability is based on
previous relatively low-Re experimental (Strang & Fernando 2001; Zhu & Lawrence
2001; Hogg & Ivey 2003; Tedford, Pieters & Lawrence 2009; Carpenter et al. 2010;
Meyer & Linden 2014) and numerical studies (Smyth et al. 1988; Smyth & Peltier
1989, 1991; Smyth & Winters 2003; Smyth 2006; Smyth, Carpenter & Lawrence
2007; Carpenter, Lawrence & Smyth 2007; Carpenter et al. 2010) in which the
induced flow is essentially dominated by molecular effects and thus the associated
turbulent mixing is minimal (i.e. the total effective diffusion of density is of the order
of the molecular diffusivity). Based on their direct numerical simulation (DNS) of
HWI at Re = 300 (when defined consistently with (1.3)), Smyth & Winters (2003)
and Smyth et al. (2007) have shown that HWI may ‘never become turbulent’ under
strongly stratified conditions and furthermore its overall cumulative mixing may be
dominated by its long-lived quasi-linear preturbulent stage. Therefore the turbulent
mixing due to HWI has been commonly observed to be relatively weak, with the
vertical irreversible transport of mass being restricted to the ejection of thin wisps
of fluid from the tips of the cusped waves (see e.g. Carpenter et al. 2010). To our
knowledge, there is no evidence in the literature for the onset of recognisable and
geophysically relevant turbulent motions produced by HWI, to the extent that it is
unclear whether energetic turbulence may be triggered by this instability at all.

However, this uncertainty essentially arises from consideration of flows with
relatively small Reynolds number Re∼O(100) due to experimental and computational
challenges in considering sufficiently large and fast flows with still ‘sharp’ density
gradients. Since the turbulent mixing properties of the KHI are now known to
change so substantially for Re& 4000 and Pr∼O(10), it seems a natural question to
investigate whether such a ‘mixing transition’ (using the terminology of Dimotakis
(2005)) also occurs for flows susceptible to primary HWI, and so in this paper
we describe the first series of analyses based on DNS of a flow susceptible to a
primary HWI with relatively high Re (Re= 4000 and 6000) and compare the results
of these simulations with similar results from simulations at much lower Re values.
Specifically, we aim to understand the effects of increasing Re on (i) the transition to
a turbulent phase of HWI, (ii) the stratified turbulence that is engendered and (iii) the
induced irreversible mixing. Furthermore, at sufficiently high Re, we aim to compare
the mixing properties of HWI with an appropriately equivalent flow susceptible to
KHI, in particular to establish whether it is possible for substantial instantaneous
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turbulent mixing still to occur when a sharp density interface, embedded within a
shear flow, is not ‘overturned’ by strong vortices centred on it, but rather ‘scoured’
by vortices on either side (Woods et al. 2010).

To achieve these objectives, the rest of the paper is organised as follows. In § 2 we
briefly review our computational and analysis strategy, which includes discussions of
the energetics and spectral analysis in § 2.1, mixing analysis in § 2.2 and the relevant
length scales in § 2.3. We present our quantitative results in § 3, demonstrating
in § 3.1 the effects of increasing Re on the evolution of HWI, its spectra and its
induced mixing. Moreover, we demonstrate in § 3.2 that, at sufficiently high Re,
turbulent breakdown mediated by primary HWI leads to substantial irreversible
mixing, comparable in magnitude and efficiency to that induced by primary KHI, yet
qualitatively different in its spatiotemporal distribution. Finally, we offer conclusions
based upon these results in § 4.

2. Computational and analysis strategy
We consider flows with initial velocity and density distributions given in (1.1)

and (1.2), and non-dimensionalise the governing incompressible Boussinesq equations
using ρ0, U0 and d to obtain

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−∇p− Ribρez + 1

Re
∇2u, (2.2)

∂ρ

∂t
+ u · ∇ρ = 1

Re Pr
∇2ρ, (2.3)

in which p denotes the deviation of the pressure field from hydrostatic balance.
The above equations also reveal the significance of the three parameters Re, Pr
and Rib as defined in (1.3). The non-dimensional forms of the reduced gravity
g′ = (ρ0/ρr)g, the kinematic viscosity ν and the thermal diffusivity κ can thus be
related straightforwardly to these parameters as g′ = Rib = Rig(0)/R, ν = Re−1 and
κ = Re−1Pr−1.

As tabulated in table 1, we consider nine simulations with Pr = 8 and Rib = 0.16.
For simulation ‘K’ at Re = 4000, we set R = 1 and so Rig(0) = 0.16 with the flow
being susceptible to a primary KHI. For the other simulations, designated by ‘Hxx’,
where the digits ‘xx’ indicate Re × 10−2, we set R = Pr1/2 = √8 (Smyth et al.
1988) and so Rig(0) ' 0.45, with the flow being susceptible to a primary HWI. For
most of these simulations, we set the streamwise extent to be one wavelength λ
of the linear mode with the largest real growth rate σ obtained by solving the full
viscously diffusive Taylor–Goldstein equation. In order to allow Holmboe waves to
merge (i.e. to investigate whether or not the pairing instability emerges), we set the
streamwise extent of simulations ‘H01’, ‘H03’ and ‘H05’ to be Lx = 2λ (see table 1
for further details). Note that, for the purpose of the discussion to follow, we have
repeated simulation ‘H05’ (designated ‘H05-hr’) at a higher resolution, similar to that
of ‘H40’.

We employ the spectral element code Nek5000 (Fischer 1997) to conduct our
DNS analyses. The reader is referred to Salehipour & Peltier (2015) and Salehipour
et al. (2015) (and the references therein) for details of the numerical methodology
and resolution requirements (see also the Appendix for a note on resolution). The
boundary conditions are assumed to be periodic in the horizontal directions while the
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Sim. Re Rib Pr R Rig(0) σ λ t2d t3d Lx Nx Ny Nz Nc
z

H01 100 0.16 8
√

8 0.16
√

8 0.019 16.94 866 — 2λ 48 4 28 14
H03 300 0.16 8

√
8 0.16

√
8 0.019 16.94 422 560 2λ 48 4 28 14

H05 500 0.16 8
√

8 0.16
√

8 0.022 16.94 292 346 2λ 48 4 28 14
H10 1000 0.16 8

√
8 0.16

√
8 0.025 16.49 240 284 λ 39 7 41 23

H20 2000 0.16 8
√

8 0.16
√

8 0.026 16.28 196 258 λ 64 12 61 39
H40 4000 0.16 8

√
8 0.16

√
8 0.027 16.19 182 234 λ 107 19 91 65

(or H)
H60 6000 0.16 8

√
8 0.16

√
8 0.027 16.15 164 222 λ 145 26 116 88

H05-hr 500 0.16 8
√

8 0.16
√

8 0.022 16.19 314 382 λ 107 19 91 65
K 4000 0.16 8 1 0.16 0.078 14.27 98 122 λ 94 19 91 65

TABLE 1. Details of the three-dimensional DNS in which the total grid points are
approximately p3NxNyNz, where p = 10 is the order of Lagrange polynomial interpolants
and Nx, Ny and Nz denote the number of spectral elements within the horizontal (Lx),
spanwise (Ly) and vertical (Lz) extents of the computational domain; Nc

z represents the
number of elements within a central region of the domain with height Lc

z = 10. Outside
of Lc

z , the adjacent elements of the grid are gradually stretched by a factor of 1.25 %. In
all these simulations, Ly = 3 and Lz = 30. Also, σ is the real part of the growth rate of
the primary instability with a wavelength λ. The times t2d and t3d are, respectively, the
characteristic time of maximum amplitude of the spanwise-averaged perturbation and the
characteristic time of the maximum amplitude of the inherently three-dimensional deviation
from this perturbation (as defined in the text).

top and bottom boundaries are assumed to be free-slip, impermeable for velocity and
insulating for the density field. The simulations are initialised with the initial base
flow distributions given in (1.1) and (1.2), which are perturbed by adding both a
two-dimensional fluctuation in the form of the eigenfunction of the appropriate linear
instability mode and three-dimensional white noise to the velocity field to excite
secondary instabilities in an unbiased manner. The amplitudes of both these added
fluctuations, namely 5× 10−2 for two-dimensional and 5× 10−3 for three-dimensional
perturbations, when scaled with U0, are small enough to ensure a posteriori that
the associated volume-averaged perturbation kinetic energy is at least six orders of
magnitude smaller than the volume-averaged mean flow kinetic energy.

2.1. Energetics and spectral analysis
The total velocity field, u(x, y, z, t), can be decomposed into a mean (denoted by an
overbar) and a perturbation component defined as

u(x, y, z, t)=U(z, t)+ u′(x, y, z, t), (2.4)
U(z, t)= 〈u〉xy, (2.5)

in which 〈 〉h denotes averaging in the h-direction. For example, 〈 〉xy indicates
horizontal averaging or 〈 〉xyz indicates volume averaging. For convenience, we also
denote horizontal averaging with an overbar.

The perturbation velocity field may in turn be subdivided into spanwise-averaged
two-dimensional perturbations and inherently three-dimensional perturbations, defined
as (Caulfield & Peltier 2000)



596 H. Salehipour, C. P. Caulfield and W. R. Peltier

u′(x, y, z, t)= [u2d + u3d, v3d,w2d +w3d], (2.6)
(u2d, 0,w2d)(x, z, t)= 〈(u−U, v,w)〉y, (2.7)

(u3d, v3d,w3d)(x, y, z, t)= (u−U − u2d, v,w−w2d). (2.8)

Following this triple Reynolds decomposition, the total kinetic energy includes
contributions from three individual reservoirs (Caulfield & Peltier 2000). These
reservoirs are (i) the horizontally averaged kinetic energy K associated with the
background stratified shear layer which is evolving in time, (ii) the two-dimensional
spanwise-averaged kinetic energy K2d associated with the two-dimensional perturba-
tions away from the background mean flow and (iii) the inherently three-dimensional
kinetic energy K3d. In addition, the potential energy budget can also be subdivided
into two components (Winters et al. 1995; Caulfield & Peltier 2000), consisting of
(i) the potential energy that is associated with a notional statically stable reference
state, PB, or equivalently the background potential energy (BPE) and (ii) the amount
of potential energy that is available to be converted back into either the kinetic
energy or BPE, which is known as the available potential energy (APE) or PA
(Lorenz 1955). Thus we can write

K =K +K ′ =K +K2d +K3d, (2.9)
P =PA +PB, (2.10)

in which each individual reservoir of kinetic energy takes the common volume-
averaged form K̃ = 0.5〈ũ · ũ〉xyz, where ũ is replaced by the respective velocity
vector (e.g. ũ = (u3d, v3d, w3d) for K3d). Furthermore, BPE or PB is obtained
through a continuous adiabatic rearrangement of the instantaneous density field into a
statically stable profile, ρ∗(z), at each step in the process of flow evolution (Winters
et al. 1995; Caulfield & Peltier 2000). Salehipour et al. (2015) presented a parallel
implementation of the ‘sorting’ procedure required to find ρ∗(z). Therefore, the
potential energy reservoirs in (2.10) are defined as

P = Rib〈ρz〉xyz, PB = Rib〈ρ∗z〉z, PA =P −PB. (2.11a−c)

The horizontal two-dimensional Fourier transform (denoted by a hat) of the
perturbation velocity field u′(x, y, z, t) is defined as

û′(kx, ky, z, t)=
∫∫

u′(x, y, z, t)e−i(kxx+kyy) dx dy, (2.12)

in which kx and ky represent the streamwise and spanwise wavenumbers, respectively.
We now define the spectral decomposition of the perturbation kinetic energy

associated with the streamwise (K̂ ′
x ), spanwise (K̂ ′

y ) and vertical (K̂ ′
z ) components

of the perturbation velocity field as

K̂ ′
x (kx, ky, t)= 1

2 〈û′û′
∗〉z, (2.13)

K̂ ′
y (kx, ky, t)= 1

2 〈v̂′v̂′
∗〉z, (2.14)

K̂ ′
z (kx, ky, t)= 1

2 〈ŵ′ŵ′
∗〉z, (2.15)

where û′
∗

denotes the complex conjugate of the perturbation velocity field and 〈 〉z
indicates vertical averaging over Lz.



Turbulent mixing due to the Holmboe wave instability 597

A streamwise spectrum for the streamwise perturbation kinetic energy, K̂ ′
x (kx, t), or

a spanwise spectrum for the spanwise perturbation kinetic energy, K̂ ′
y (ky, t), may be

obtained by integrating over the appropriate wavenumber as

K̂ ′
x (kx, t)= 2π

Ly

∑
ky

K̂ ′
x (kx, ky, t), (2.16)

K̂ ′
y (ky, t)= 2π

Lx

∑
kx

K̂ ′
y (kx, ky, t), (2.17)

in which δkx = 2π/Lx and δky = 2π/Ly have been employed.

2.2. Mixing analysis
As already noted in the Introduction, a primary focus of this study is the quantification
of the irreversible mixing induced in flows susceptible to primary HWI. The concept
of an irreversible mixing rate, M , is closely connected to the time evolution of
BPE (2.11).

For a closed system consisting of Boussinesq stably stratified flow, the irreversible
mixing rate, M , is equal to the instantaneous rate of monotonic increase in its
BPE. More generally, however, for any Boussinesq system (see Salehipour & Peltier
(2015) for details), the rate M of irreversible mixing may be defined as the diffusive
destruction of small-scale density variance (Winters et al. 1995) after excluding the
diffusion rate associated with the laminar flow, denoted by Dp, i.e.

M = Rib

Re Pr

[
1
V

∫
V
−
(

dρ∗
dz

)−1

|∇ρ|2 dV

]
−Dp. (2.18)

Notice that M is a volume-averaged quantity that is obtained through adiabatic sorting
of the entire density field.

The squared buoyancy frequency associated with the actual mean field as well as
that associated with its notional reference state (denoted by an asterisk) are defined
as

N2 = 〈N2(z, t)〉z =−Rib

〈
dρ
dz

〉
z

= 2Rib

Lz
, (2.19)

N2
∗ = 〈N2∗(z, t)〉z =−Rib

〈
dρ∗
dz

〉
z

= 2Rib

Lz
. (2.20)

Note that, while in general the horizontally averaged buoyancy frequencies, N2(z, t) 6=
N2∗(z, t), due to the boundary conditions, the volume-averaged buoyancy frequencies
defined in this way are time-independent and N2 =N2

∗ .
The laminar dimensional diffusion rate, Dp, is explicitly defined as κN2. In terms of

the governing control parameters, Dp may be represented in dimensionless form as

Dp = 2Rib

Re Pr Lz
. (2.21)

Thus Dp becomes increasingly insignificant for high-Re flows, while it may well be
of the same order as M for low-Re flows.
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Since our computational domain represents a closed system (periodic horizontal
boundaries and zero vertical outflow), the monotonic rise in BPE represents the
amount of cumulative turbulent mixing (Mc) once the contribution of laminar diffusive
mixing, Dp, is subtracted. Thus Mc is defined here as

Mc(t)=
∫ t

0
M dt=PB(t)−PB(0)−Dpt. (2.22)

Insofar as the relative importance of turbulent mixing (M ) to laminar diffusion
(Dp) is concerned, a meaningful comparison between low-Re and high-Re flows must
consider M /Dp (and not simply M ). This statement holds for both instantaneous and
cumulative (i.e. integrated in time) measures of these quantities.

Furthermore, the time-dependent viscous dissipation rate of total kinetic energy, ε(t),
and the horizontal average of the dissipation rate, ε(z, t), are defined as

ε(t)= 〈ε(z, t)〉z = 2
Re
〈sijsij〉xyz, (2.23)

where sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the strain-rate tensor.
To quantify the amount of irreversible mixing, it is necessary to compute the

irreversible diapycnal diffusivity K∗ρ , which may be obtained using the generalised
Osborn formula introduced in Salehipour & Peltier (2015) following the diascalar
formulation of Winters & D’Asaro (1996). This is based upon the following formulae:

K∗ρ =
M

N2∗
= νΓ Re∗b, (2.24)

Γ =M

ε
, (2.25)

Re∗b =
ε

νN2∗
, (2.26)

where Γ denotes the irreversible flux coefficient and Re∗b is the buoyancy Reynolds
number associated with N2

∗ . Note that we will henceforth use Re∗b and Reb = ε/(νN2)
interchangeably because, as discussed earlier (see (2.19) and (2.20)), N2 = N2

∗ =
2Rib/Lz. Although N2 may appear to result in Reb being dependent upon the vertical
extent Lz of the domain, it is important to remember that the definition of ε given in
(2.23) involves volume averaging, and so Reb is indeed Lz-independent and essentially
involves the total amount of kinetic energy dissipation in the flow in its numerator.

The irreversible mixing efficiency (bounded from above by unity) may also be
defined as

η= M

M + ε =
Γ

1+ Γ . (2.27)

Importantly, though both M and ε as defined in (2.18) and (2.23), respectively,
are volume-averaged quantities, any dependence on the size of the domain cancels
naturally in this definition of mixing efficiency.

Notice that the natural measure of the amount of turbulent mixing achieved in
different simulations with different flow parameters is the relative enhancement of
this transport compared to the purely diffusive transport due to the flow being at
finite Péclet number, and so we consider K∗ρ/κ =M /Dp (and not simply K∗ρ) in each
simulation. Furthermore, it is important to stress that large K∗ρ requires the mixing to
be both efficient (i.e. with large values of η) and also energetic (i.e. at large values
of Re∗b).
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2.3. Length scales
Following Smyth & Moum (2000), we define the integral length scales associated with
the time-evolving shear and density layers as

`u =
∫ Lz/2

−Lz/2
(1−U2

) dz, `ρ =
∫ Lz/2

−Lz/2
[1− (ρ − 1)2] dz, (2.28a,b)

in which U(z, t) = 〈u〉xy and ρ(z, t) = 〈ρ〉xy denote non-dimensional horizontally
averaged velocity and density profiles at every instant in time (note that the initial
form of these profiles appeared in dimensional forms in (1.1) and (1.2)).

The integral length scales in (2.28) are defined such that their initial values
correspond closely to the initial shear and density layer thicknesses (i.e. `u(t = 0)=
2d tanh(Lz/2) and `ρ(t= 0)= 2δ tanh(Lz/2)). Thus their ratio at t= 0 is R= 1 for flows
susceptible to KHI, and R =√Pr for flows susceptible to HWI. Furthermore, based
on these integral length scales, a time-dependent measure of the gradient Richardson
number at the midpoint of the shear layer, Rig(0), may be defined following Smyth
& Moum (2000). Therefore, we will here generalise the non-dimensional parameters
Rib, R and Re as defined in (1.3) to time-dependent forms using these, in general
evolving integral length scales:

R= `u

`ρ
, Rib = Rig(0)

R
= gρ0`u

2ρrU2
0
, Re= U0`u

2ν
. (2.29a−c)

The buoyancy Reynolds number, Reb = ε/(νN2), may also be interpreted as a ratio
of two dynamically significant length scales, such that

Reb = ε

νN2
=
(
`O

`K

)4/3

, (2.30)

where `K is the Kolmogorov microscale and `O is the Ozmidov scale. While `K
represents the dissipation scale, `O represents the largest scale below which the
anisotropic effects of stratification may be neglected (Smyth & Moum 2000; Lindborg
2006; Brethouwer et al. 2007). For flows with sufficiently strong stratification and
high Reynolds number, scales above `O can lie within the so-called ‘stratified
turbulence’ regime – as opposed to the classical Kolmogorov turbulence (see e.g.
Lindborg 2006; Brethouwer et al. 2007) – typically associated with strong anisotropy
in vertical scales and velocities compared to those in the horizontal.

In our numerical setting in which the boundary conditions are only periodic in the
horizontal directions, it is not self-evident what length scale is most appropriate to be
employed for averaging in the vertical direction. Neither `ρ nor `u entirely capture
the non-trivial vertical variability of, for example, ε(z, t) and N2(z, t), given the initial
base velocity and density distributions defined in (1.1) and (1.2). In fact, as we see
below, `ρ and `u are both much smaller than Lz within which the sorting process,
required for the mixing analysis, is performed. Vertical averaging across Lz, on the
other hand, may introduce unphysical dependence on the computational domain height.
This is a particular issue for the simulations that we are considering here, since we
expect that, sufficiently far above and below the shear layer, the turbulent dissipation
and the buoyancy frequency will both drop to very small values. Although such
decay is appropriate so that our computations are not affected spuriously by boundary
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effects, it makes it somewhat more challenging to choose appropriate definitions of
these quantities to define the key physical length scales.

We choose to define both `O and `K with an appropriately defined scale factor of
(`u/Lz)

1/4, such that

`O =
(
`u

Lz

)1/4 ( ε
N3

)1/2
, `K =

(
`u

Lz

)1/4 (
ν3

ε

)1/4

, (2.31a,b)

where `u is the thickness of the shear layer as defined in (2.28), which is, of course,
greater than that of the density layer for HWI. Note that N3 in `O has been calculated
as (N2)3/2 (see (2.19)). Given these definitions, it is straightforward to show that Reb=
ε/(νN2)= (`O/`K)

4/3.
The scale factor of (`u/Lz)

1/4 in (2.31) has been chosen primarily to remove the
Lz dependence of both `O and `K that would appear otherwise (i.e. without the
scale factors) as L1/4

z . Furthermore, we have chosen this dynamic scale factor to
be instantaneously identical for both `O and `K so that their ratio in Reb remains
unaffected.

Although `u seems a natural choice to be employed in the scale factor of (2.31),
we must note that other choices would change the numerical values of `O and
`K . As will be shown in § 3.1.2, our specific choice of `u in (`u/Lz)

1/4 provides
estimates of `O that are situated at physically reasonable locations in the spectra of
perturbation kinetic energy, e.g. consistent with those reported in Brethouwer et al.
(2007). In other words, the resulting values of `O would mark the transition length
scale between the ‘Kolmogorov’ (in the sense of isotropic, unstratified) turbulence
and ‘stratified’ turbulence, lending significant support to our particular choice of the
scale factor. Again, so long as the same scale factor is chosen for both `O and `K ,
replacing `u by another variable would not affect Reb in (2.30).

Furthermore, notice that we have defined `O and `K in (2.31) based on vertically
averaged quantities over the entire domain height Lz (i.e. ε and N2). It is important
to remember that M (2.18), K∗ρ (2.24) and η (2.27) (or Γ ) are all ‘volume-averaged’
quantities by construction. In addition, the spectrally decomposed components of the
perturbation kinetic energy in (2.15) are also averaged vertically across the entire
domain height (Lz). Thus, we believe, for consistency with the mixing and spectral
analyses, it is natural to average the dissipation rate and the mean flow density
gradient (employed in the definition of `O and `K in (2.31)) also across Lz.

3. Results

For the purpose of investigating the time evolution of various simulations, three
different characteristic times will be employed: t2d (see table 1) when K2d is
maximum; t3d (see table 1) when K3d overwhelms K2d and becomes maximum;
and t2d + 100.

3.1. Reynolds-number effects on HWI
Figure 1 shows contour plots of the density field, on the x–z plane at the spanwise
midpoint of the computational domain for simulation ‘H05’ at Re = 500 (a–c) and
simulation ‘H40’ at Re= 4000 (d–f ) at t2d, t3d and t2d + 100. Note that, as mentioned
earlier in § 2, simulation ‘H05’ includes two wavelengths of the primary HWI due to
its horizontal extent being twice the wavelength of the fastest (linear) growing mode.
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(a) (b) (c)

(d ) (e) ( f )
0.5

0

1.0

1.5

2.0

FIGURE 1. Contour plots of density evolution for simulation ‘H05’ (a–c) and simulation
‘H40’ (d–f ) on the x–z plane at the spanwise midpoint of the computational domain at
t= t2d, t3d and t2d+ 100, as defined in the text. While the horizontal extent of these panels
illustrates Lx, which is almost twice as long in (a–c) as in (d–f ), their vertical extent is
chosen to result in similar panel aspect ratio and is smaller than Lz.

There is no indication of vortex merging due to a subharmonic pairing instability even
at Re as low as Re= 500 (or even lower at Re= 300, based on simulation ‘H03’; not
shown), let alone at higher Reynolds numbers at which such subharmonic instability
has been shown to become increasingly suppressed in flows susceptible to the primary
KHI as Re increases (Mashayek & Peltier 2012).

As illustrated in figure 1, the evolution of the high-Re HWI appears to be
qualitatively different from the low-Re simulation, although, similarly to previously
described low-Re studies (see e.g. Smyth et al. 1988), at high Re the development
of the primary two-dimensional HWI still includes two counter-propagating waves
above and below the shear layer (cf. figure 1a,d at t2d). Nevertheless, it appears that
at high Re the HWI experiences strong secondary instabilities that trigger turbulence
with a much broader range of spatial scales (cf. figure 1b,e at t3d). In particular,
as we discuss further below, the ensuing turbulence (cf. figure 1c, f at t2d + 100) is
much more vigorous and widespread at higher Re than intermittent and weak ‘wisp’
ejections from interfacial cusps that are characteristic of low-Re HWI and apparent
in the upper panels.

3.1.1. Re effects on the transition phase of HWI
A careful characterisation of the ‘zoo’ of secondary instabilities at high Re that

emerge subsequent to the growth of the primary HWI is beyond the scope of the
current paper. The classical method of linear stability analysis based on Floquet
theory that is employed for similar purposes (by e.g. Klaassen & Peltier 1985, 1989;
Mashayek & Peltier 2012; Salehipour et al. 2015) (in the context of KHI) is based
on a fundamental assumption of time-scale separation between the slow growth
of the primary two-dimensional instability and the fast growth of the inherently
three-dimensional secondary instabilities. However, the growth of HWI involves yet
a further time scale associated with the oscillatory nature of the oppositely travelling
interfacial waves in this initially symmetric flow which thereby may undermine the
assumption of time-scale separation. Therefore, as also noted by Smyth (2006), it is
questionable whether a similar tool (see Smyth & Peltier 1991) should be employed
for analysing the secondary instabilities involved in the three-dimensionalisation of
HWI. It would be more natural to utilise adjoint-based methods (see the recent
review of Luchini & Bottaro (2014)), which allow the identification of the most
rapidly growing perturbations on a time-varying non-parallel base flow over a



602 H. Salehipour, C. P. Caulfield and W. R. Peltier

(a) (b) (c)

(d ) (e) ( f )

FIGURE 2. Three-dimensional isosurfaces of streamwise vorticity, ωx =−0.25 (blue) and
ωx = 0.25 (red) overlaid by an isosurface of spanwise vorticity, ωy = 0.5 (grey) for
simulation ‘H40’ at Re = 4000 during one Holmboe wave cycle starting at t2d − 18
and ending at t2d. The counter-propagating streamwise vortex tubes associated with the
secondary shear-aligned convective instability are shown to play a significant role during
the transition to turbulence of HWI at this high Re.

finite time horizon. This method has recently proved useful to identify the optimal
infinitesimal perturbations that grow on a developing unstratified flow susceptible
to a primary KHI, even when the primary instability is varying too rapidly for an
assumption of time-scale separation to be valid (see Arratia, Caulfield & Chomaz
(2013) for further details).

Nevertheless, the three-dimensionalisation of HWI at high Re may be qualitatively
investigated by inspecting the vorticity field. Figure 2 illustrates the time evolution
of streamwise vorticity isosurfaces with ωx=±0.25, overlaid (for better visualisation)
by an isosurface of spanwise vorticity with ωy = 0.5, during a full cycle of the HWI
oscillation that is precursory to t2d. It is quite evident that, at this high Re, familiar
vortex structures emerge as robust features of the three-dimensionalisation process of
HWI. These counter-rotating shear-aligned rolls of secondary convective instability
have been previously identified as a primary catalyst of three-dimensionalisation
of KHI at both relatively low-Re (see e.g. Klaassen & Peltier 1985; Caulfield &
Peltier 1994, 2000) and high-Re (Mashayek & Peltier 2013; Salehipour et al. 2015)
conditions. Similar manifestations of this mode of secondary convective instability
have not previously been reported in the literature for HWI, although its weak
indications are present at low-Re simulations of Smyth (2006) (see his figure 10).
It is apparent that these counter-rotating convective rolls play a crucial role in the
transition of HWI into turbulence at high Re. Thus it appears that the introduction of
a further time scale associated with the oscillations of the initially two-dimensional
Holmboe waves has not hindered the emergence of the Klaassen–Peltier mode of
instability and therefore we conjecture that it continues to be the primary catalyst of
transition for the assumed values of R, Rib and Pr (see table 1).

The important role of Re in the emergence of these secondary instabilities, and
hence the three-dimensionalisation process, may be quantified by considering the
spanwise spectra of the spanwise kinetic energy, K̂ ′

y (ky, t) (2.17), at time t = t2d.

Figure 3(a) illustrates the spanwise wavenumber (ky) variations of K̂ ′
y (ky) after being
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FIGURE 3. (Colour online) (a) The spanwise spectrum of spanwise kinetic energy, K̂ ′
y (ky)

(2.17), at t= t2d. Symbols ‘E’ and ‘@’ (if available) mark `O and `K (2.31), respectively.
(b) Time evolution of the three-dimensional kinetic energy, K3d, after being normalised by
the initial total kinetic energy K0 for a series of HWI simulations with different values
of initial Re (see table 1). The saturation time of two-dimensional primary HWI, t2d, is
marked by a ‘+’ for each simulation. (c) The Re dependence of σ3d= (1/(2K3d)) dK3d/dt
associated with the growth rate of the three-dimensional perturbations. The dashed curve
provides a sigmoid fit for illustrative purposes.

normalised by the total spanwise kinetic energy K ′
y = (2π/Ly)

∑
ky

K̂ ′
y for simulations

‘H03’, ‘H05’, ‘H10’, ‘H20’, ‘H40’ and ‘H60’. These simulations cover more than
one decade in Re (i.e. Re= 300 to 6000). Note that, at the time t= t2d, the spanwise
kinetic energy is injected at a length scale that is associated with the shear-aligned
secondary convective rolls as depicted in figure 2.

The wavenumber at which the spectra achieve maximum amplitude (i.e. the
dominant injection scale) must therefore be attributed to these rolls in the spanwise
direction. For example, focusing on simulation ‘H40’, figure 2( f ) suggests a
wavelength of approximately λ = Ly/4 associated with these rolls. This wavelength
corresponds to ky ∼ 4δky ∼ 8, which is fairly consistent with figure 3(a) (simulation
‘H40’). Note that, as shown in figure 2, the spanwise structure of these rolls is much
more clearly visible at t < t2d and becomes more distorted at t2d, which is why the
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peak of the spanwise spectra associated with simulation ‘H40’ in figure 3(a) covers
a relatively wider range of scales including ky ∼ 8.

Figure 3(a) also demonstrates that the dominant injection scale associated with
shear-aligned convective rolls shifts towards higher wavenumbers as Re increases
(e.g. compare cases ‘H10’, ‘H20’, ‘H40’ and ‘H60’ in figure 3a). This shift would
be manifest physically by an increasingly high number of streamwise rolls as Re
increases.

The increase in the dominant spanwise wavenumber of the cross-stream spectra
that occurs as a consequence of increasing Re leads to a qualitatively different
process of three-dimensionalisation during the transition to the turbulent phase of
HWI. This difference may be further demonstrated by inspecting the growth rate of
the three-dimensional perturbations, i.e. σ3d = (1/(2K3d)) dK3d/dt, which assumes
K3d ∝ exp(2σ3dt).

Figure 3(b) illustrates the time dependence of K3d for simulations with increasing
values of Re (from ‘H03’ to ‘H60’), while figure 3(c) plots the inferred σ3d as a
function of Re. In figure 3(c), σ3d is calculated based on the slope of K3d during
its exponential growth stage associated with the emergence of three-dimensional
secondary instabilities that is most visible in figure 3(b) at t< t2d (for each simulation
in figure 3(b), t2d is marked by a ‘+’). Also note that figure 3(c) includes an
additional data point indicating σ3d = 0 for Re= 100 for which K3d(t) is not shown
in figure 3(b). This additional data point is based on simulation ‘H01’ at Re= 100 for
which K3d does not grow at all. In this case, the two-dimensional oscillating HWI
that emerges remains completely two-dimensional until being viscously dissipated
entirely.

As suggested by figure 3(c), the growth rate of the three-dimensional perturbations,
as measured by σ3d, increases nonlinearly with Re and becomes ‘saturated’ for Re &
4000. This non-trivial saturation of σ3d with respect to Re implies that, for Re& 4000,
the secondary instabilities become as energetic and vigorous as possible for the given
values of Pr, Rib and R. In other words, Re = 4000 appears to be sufficiently high
(for the fixed set of other input parameters) that the transition phase has become
largely Re-independent. The nonlinear dependence of σ3d on Re is not a matter of
degree, which could have been predicted a priori by linear extrapolation of the result
obtained from previous low-Re simulations of HWI (e.g. those of Smyth & Winters
(2003) and Smyth et al. (2007)) corresponding to (in our convention) Re . 600, but
is rather evidence of qualitatively different dynamics occurring at sufficiently high Re.
This is perhaps unsurprising, as it appears that the flow has passed through a ‘mixing
transition’ in the sense of Dimotakis (2005).

3.1.2. Re effects on the turbulent phase of HWI
The flows shown in figure 1 suggested that an increase in Re results in a rich

range of vigorous turbulent structures that are in fact mediated primarily by secondary
instabilities as shown in figure 2 and quantified in figure 3(a). Furthermore, the growth
rate of these three-dimensional secondary instabilities was shown in figure 3(c) to
become apparently independent of Re for Re & 4000. Yet an outstanding question
concerns the extent to which these aforementioned findings regarding the influence
of Re on the transition phase would affect the stratified turbulent flow that is induced
after the primary HWI collapses. We focus upon this issue in what follows in this
section.
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The characteristic spectral slope of both horizontal and vertical energy spectra in
stratified flows as well as the direction of energy cascade (forward or inverse) has
been the focus of much debate and discussion based on observational, theoretical and
numerical investigations (see e.g. Lilly 1983; Nastrom & Gage 1985; Smyth & Moum
2000; Billant & Chomaz 2001; Laval, McWilliams & Dubrulle 2003; Riley & de
Bruyn Kops 2003; Waite & Bartello 2004; Lindborg 2006; Brethouwer et al. 2007;
Riley & Lindborg 2008; Augier, Chomaz & Billant 2012; Bartello & Tobias 2013).
Specifically, a horizontal k−5/3 spectrum has been suggested to characterise stratified
turbulent flows with length scales larger than the Ozmidov scale (`> `O) provided that
Reb � 1 (Lindborg 2006; Brethouwer et al. 2007). Despite the strongly anisotropic
effects of stratification on these larger scales, the horizontal components of a spectrum
have been shown to exhibit −5/3 power-law scaling that is superficially similar to
the ‘inertial range’ of unstratified three-dimensional isotropic turbulence. As one
approaches `O from larger scales, the suppressing effect of the stratification becomes
weaker, and therefore a seamless connection with the classical Kolmogorov-like
isotropic turbulence for ` < `O is expected.

Unlike previous numerical studies which have characterised the k−5/3 horizontal
spectrum (see e.g. Riley & de Bruyn Kops 2003; Augier et al. 2012), we do not
focus here on ‘forced’ stratified turbulent flow. Rather, our focus is on the turbulent
flow that is produced after a ‘freely’ evolving instability mechanism, such as KHI
and HWI, breaks down into turbulence (see e.g. figure 1b,c,e, f ). Furthermore, in
this section, we will focus only on spectra of streamwise variability, for two reasons:
(i) the computational domain (and hence the wavenumber space) has the largest extent
in that direction; and (ii) due to the prevailing shear, the fluctuations are naturally
strongest in that direction.

Figure 4 compares the streamwise spectra associated with the streamwise perturbation
kinetic energy, K̂ ′

x (kx, t) (see (2.16)) in both unscaled and compensated forms.
These spectra are calculated at t = t3d (figure 4a,b) and t = t2d + 100 (figure 4c,d)
for simulations ‘H05-hr’ (HWI at Re = 500), ‘H40’ (HWI at Re = 4000), ‘H60’
(HWI at Re = 6000) and ‘K’ (KHI at Re = 4000). For consistency, the spatial
resolution employed in ‘H05-hr’ is identical to that of ‘H40’ (see table 1), implying
an identical resolution also in the Fourier wavenumber space. The Ozmidov (`O) and
Kolmogorov (`K) length scales (as defined in (2.31)) are also marked on figure 4
by open circles and open squares, respectively (note that, for example, the Ozmidov
wavenumber is defined as kO = 1/`O). Thus Reb might also be inferred from figure 4
as Reb = (`O/`K)

4/3.
There are several interesting findings based on figure 4. Increasing Re dramatically

affects the energy spectrum associated with the turbulence induced by HWI.
Comparing K̂ ′

x (kx, t3d) and K̂ ′
x (kx, t2d + 100) for simulations ‘H05-hr’ and ‘H40’

clearly demonstrates the qualitative difference in the streamwise spectra. This suggests
that the disordered states shown in figure 1 for these two simulations are qualitatively
different in character. As already noted, this is not surprising, as it is consistent with
the influential ‘mixing transition’ hypothesis of Dimotakis (2005).

Furthermore, a −5/3 spectrum for ` > `O is only realised if Re is sufficiently
high (i.e. Re & 4000). Such a characteristic spectrum of k−5/3

x for `> `O is especially
apparent at t = t3d when Reb is usually largest. Increasing Re from Re = 4000 to
Re = 6000 also provides a more seamless connection at `O between a characteristic
−5/3 power-law scaling and that of classical Kolmogorov (i.e. isotropic) turbulence,
which is again due to its higher Reb value at this time (i.e. Reb(t3d) = 38 versus
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FIGURE 4. (Colour online) (a,c) Streamwise spectra of K̂ ′
x (kx, t) (2.16) for three

simulations ‘H05-hr’, ‘H40’ and ‘K’. (b,d) Compensated streamwise spectra of K̂ ′
x (kx, t).

These spectra are calculated at times (a,b) t= t3d and (c,d) t2d + 100. The Ozmidov (`O)
and Kolmogorov (`K) length scales (see (2.31)) are marked by ‘E’ and ‘@’, respectively.
The effect of Re on the stratified turbulence generated by HWI is illustrated and compared
with the spectra of KHI-induced turbulence at a similarly high Re.

Reb(t3d) = 51). Indeed, for the KHI simulation at Re = 4000, this transition at `O

appears to be smoother, because Reb(t3d)= 124 is higher.
Moreover, it is very interesting to note that the spectra associated with both

KHI and HWI become almost indistinguishable for sufficiently high Re when
normalised by the total perturbation kinetic energy of the streamwise spectra
(i.e. K ′

x = (2π/Lx)
∑

kx
K̂ ′

x ). This striking similarity persists in time during the
turbulent stage (cf. figure 5a,b).

The value of Reb = (`O/`K)
4/3 (2.30) at t3d quantifies the maximum instantaneous

level of turbulence energetics (as measured by turbulent dissipation) relative to the
stabilising effects of viscosity and stratification. Based on figure 5(a), for example, the
HWI at Re= 500 produces Reb(t3d)∼ 6. Consequently, at this low Reb, the resulting
turbulence belongs to a regime that is dominated by molecular viscous effects.
In fact, in practice, flows with Reb > 20 are usually considered to be ‘turbulent’
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FIGURE 5. (Colour online) Compensated streamwise spectra of K̂ ′
x (kx, t) (2.16)

after being normalised by the total streamwise perturbation kinetic energy K ′
x =

(2π/Lx)
∑

kx
K̂ ′

x for simulations ‘H05-hr’, ‘H40’, ‘H60’ and ‘K’. These spectra are
calculated at times (a) t = t3d and (b) t = t2d + 100. Similar to figure 4, `O and `K are
marked by ‘E’ and ‘@’, respectively.

(Smyth & Moum 2000), in accord with the arguments of Brethouwer et al. (2007)
for Reb � 1. This requirement means that `O and `K should be sufficiently widely
separated for a turbulent cascade to be largely unaffected by both viscosity and
stratification. In other words, at lower Reb values, the flow becomes laminar due to
the combined suppressing effects of stratification and viscosity.

3.1.3. Re effects on mixing of HWI
We wish to quantify the effect of Reynolds number on irreversible mixing

induced by HWI. The results of simulations ‘H05-hr’ (at Re = 500), ‘H40’ (at
Re= 4000) and ‘H60’ (at Re= 6000) are used in figure 6 in order to produce appro-
priate ‘instantaneous’ and ‘cumulative’ measures of mixing. Specifically, figure 6(a)
illustrates the time variation of M /Dp = K∗ρ/κ (see the discussion following (2.24)),
which quantifies the instantaneous level of irreversible diapycnal mixing relative to
the molecular diffusion rate. In addition, figure 6(b) shows the time dependence of
the cumulative irreversible mixing Mc (2.22) that is directly related to the cumulative
increase in BPE, in this case with respect to the (notional) cumulative increase
associated with the laminar diffusion (Dpt). For ease of comparison, the abscissa is
shifted from t to t− t2d in these panels of figure 6.

For HWI at Re = 500 (see figure 6a), K∗ρ remains comparable to the molecular
diffusivity (κ) throughout its entire life cycle (i.e. its maximum reaches ∼4κ). This
dominance of molecular effects as noted earlier (recall that Reb(t3d) ∼ 6 for this
case) is a consequence of the low Reynolds number that has been employed in this
simulation. Smyth et al. (2007) also noted this issue on the basis of their DNS
analyses of HWI at Re= 300 and 600. In addition, based on scaling arguments, they
suggested that diapycnal diffusivity would increase linearly with Re. However, this
hypothesis is not consistent with our results in figure 6.

For example at t3d (indicated by ‘∗’ in figure 6a), M /Dp (or K∗ρ/κ) increases
nonlinearly with Re (i.e. varies from ∼4 at Re = 500 to ∼62 at Re = 4000 or
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FIGURE 6. (Colour online) Time dependence for simulations ‘H05-hr’ (Re= 500, dotted),
‘H40’ (Re= 4000, dashed) and ‘H60’ (Re= 6000, solid) of: (a) instantaneous mixing rate,
M (2.18) relative to the laminar diffusion rate Dp (2.21); and (b) cumulative irreversible
mixing Mc (2.22) normalised by Dpt (2.21). The time t3d in both panels is indicated
by ‘∗’.

to ∼87 at Re= 6000). Similarly, a cumulative measure of net diapycnal diffusivity, as
measured by Mc/Dpt in figure 6(b), also suggests a nonlinear increase with respect to
Re for the total rise in Mc/Dpt. It is apparent that, at Re= 500, the total cumulative
‘mixing’ scales with purely laminar diffusion, as the dotted line is close to horizontal,
while for simulations at higher Re, the mixing is clearly much more intense and
qualitatively different in character. Note that the highest value of Re (Re = 600) in
the DNS analyses of Smyth et al. (2007) is markedly below the transitional Reynolds
number of Re ≈ 4000 for which (i) the growth rate of secondary instabilities begin
to saturate (see figure 3c) and (ii) the spectrum of streamwise perturbation kinetic
energy reveals a −5/3 power law for `> `O (see e.g. figure 4b).

3.2. Mixing analysis at high Re
In the remainder of this paper, and for convenience, we will entirely focus upon
the results of two high-Re simulations, namely ‘H40’ (HWI at Re = 4000) and ‘K’
(KHI at Re = 4000). In addition, for brevity, we will refer to simulation ‘H40’ as
simulation ‘H’.

A qualitative comparison of the flow structures resulting from high-Re HWI and
KHI may be obtained by inspecting how the primary band of spanwise vorticity
in the shear layer evolves in time. For this purpose, figure 7 shows contour plots
of the spanwise vorticity, ωy, on the x–z plane at the spanwise midpoint of the
computational domain for simulation ‘K’ (a–c) and simulation ‘H’ (d–f ) at the three
chosen characteristic times t2d, t3d and t2d + 100. Figure 7(a–c) illustrates the typical
transition to turbulence mediated by the saturation of a primary KHI subject to strong
secondary instabilities (figure 7a, at t2d). The saturated KHI then rapidly breaks down
into a broad band of turbulence (figure 7b, at t3d) that is centred on the ‘overturned’
primary density interface and thus strongly mixes the fluid. Finally, the turbulence
gradually decays as the flow relaminarises (figure 7c, at t2d + 100). The high-Re
HWI evolves in a qualitatively different way from the high-Re KHI, as is apparent
in figure 7(d–f ). Besides the previously known fundamental differences between the
linear and nonlinear laminar structure of HWI and KHI (as reviewed briefly in § 1
and explained in depth by, for example, Smyth et al. (1988), Caulfield (1994)) that
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FIGURE 7. Contour plots of the spanwise vorticity (ωy) evolution for simulation ‘K’ (a–c)
and simulation ‘H’ (d–f ) on the x–z plane at the spanwise midpoint of the computational
domain at t= t2d, t3d and t2d + 100, as defined in the text.

might also be inferred from figure 7(d), it is clear at this high Re that HWI induces a
much more long-lived turbulence (figure 7e at t3d). Furthermore, unlike KHI-induced
mixing that is obtained by overturning of the primary density interface, HWI appears
to mix the flow by ‘scouring’ either side of the primary density interface (figure 7f
at t2d + 100). We will focus more on these different mixing mechanisms and their
distinct spatial characteristics in the next section.

The vertical profiles associated with the horizontally averaged velocity, U(z, t) =
〈u〉xy, and density profiles, ρ(z, t) = 〈ρ〉xy, of simulations ‘H’ and ‘K’ are illustrated
in figure 8(a–c) for the same three characteristic times. Further useful information
regarding the temporal evolution of these profiles may be obtained by using the
generalised time-dependent forms of R(t), Rib(t), Rig(0, t) = RRib(t) and Re(t) as
defined in (2.29). These time-dependent quantities are shown in figure 8(d–g) and
characterise the evolving shear and density layers associated with KHI and HWI.
While the ratio R(t) remains ∼1 for KHI, it decreases slightly from its initial value
of
√

Pr ∼ 2.8 (see table 1) to ∼2.2 for HWI. Although the overall thickness of the
shear and stratified layers, as characterised by `u and `ρ (2.28), both increase in
time for both KHI and HWI (see the vertical profiles in figure 8a–c), the two scales
expand differently in the case of HWI. In particular, the overall expansion of the
density layer in HWI is greater than that of the shear layer (hence a decrease in R).
In addition, although both simulations ‘K’ and ‘H’ begin with identical initial values
of Rib = 0.16 and Re = 4000, the final values of these quantities differ noticeably.
Both Rib and Re become greater for KHI than HWI because the shear layer thickness
`u increases more significantly in the flow susceptible to KHI.

Next we consider quantitatively the energetics of simulations ‘H’ and ‘K’. In
figure 9(a) we plot the time dependence of K2d (solid curve) and K3d (dashed
curve), while in figure 9(b) we plot the time dependence of the change of the BPE
and APE energy reservoirs relative to their initial values (e.g. 1PB=PB(t)−PB(0))
with the purely diffusive component subtracted for BPE. Note that 1PB=Mc+Dpt,
as shown in (2.22). The slower and oscillatory nature of the initial growth rate of the
HWI, and the smaller maximum amplitude of both the primary instability and the
ensuing turbulence by comparison with the KHI, are all apparent in figure 9(a). The
oscillations of K2d are also manifest in the time variations of R and Rig(0) in figure 8
and PA in figure 9(b). The oscillatory variations of PA are nevertheless directly out
of phase with K2d. This anticorrelated time lag is due to the reversible exchanges
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FIGURE 8. (Colour online) (a–c) Vertical structure of horizontally averaged density and
velocity profiles (ρ, U+ 1) for simulations ‘H’, plotted with thick lines, and ‘K’, plotted
with thin lines, at times (a) t2d, (b) t3d and (c) t2d + 100. Bottom panels illustrate the
time evolution of (d) R= `u/`ρ and (e) the bulk Richardson number Rib, ( f ) the gradient
Richardson number at the interface, Rig(0)=RRib, and (g) the Reynolds number Re based
on the extended definitions in (2.29). The characteristic times t2d, t3d and t2d + 100 are
marked in (d–g) by ‘+’, ‘∗’ and ‘×’, respectively.

between K2d and P that are stored in the form of PA. Based on K3d in figure 9(a),
it is also clear that the three-dimensional turbulent motions, and presumably the
associated irreversible mixing for the HWI, not only arise later (relative to t2d) but
are also longer-lived.

The cumulative amount of turbulent mixing, Mc (2.22), that is manifested here
as the total rise in BPE is approximately five times more for the KHI compared to
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FIGURE 9. Time dependence for simulations ‘H’, plotted with thick lines, and ‘K’, plotted
with thin lines, of: (a) the spanwise-averaged kinetic energy K2d (solid curves) as well
as the inherently three-dimensional perturbation kinetic energy K3d (dashed curves); and
(b) changes in the APE (PA, solid) and BPE (PB, dashed) reservoirs (2.11). For our
closed system, the dashed curves also represent the cumulative amount of mixing Mc(t)
(2.22).

the HWI. This higher Mc for the KHI is primarily due to the associated extremely
rapid rise of BPE between t2d and t3d, which is also synchronised with a rapid and
significant decay of APE. Indeed, for the KHI, the maximum PA is also substantially
larger than for the HWI, due to the fact that the KHI overturns the density interface,
thus substantially increasing the potential energy of the system through vigorous
stirring. The decrease in APE from its large value occurs as a result of a sudden
‘burst’ of turbulence due to the collapse of the KHI overturn, a process that is
inherently absent in the case of HWI, where PA is increased substantially due to
‘scouring’ of the interface by propagating vortices, leading to the characteristic cusped
waves of the finite-amplitude manifestation of the HWI. Indeed, HWI involves a slow
and gradual rise (or decay) of BPE (or APE) as shown in figure 9(b). We will
attribute these differences below to the different mixing mechanics and localisation
involved in KHI and HWI.
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FIGURE 10. Time dependence for simulations ‘H’, plotted with thick lines, and ‘K’,
plotted with thin lines, of: (a) irreversible mixing rate, M , as defined in (2.18) (solid
line), viscous dissipation rate ε, as defined in (2.23) (dashed line); and (b) the buoyancy
Reynolds number, Re∗b, as defined in (2.26).

Figure 10(a,b) illustrates the time dependence of the instantaneous values of
irreversible mixing rate, M (as defined in (2.18)), total viscous dissipation, ε (as
defined in (2.23)), and the buoyancy Reynolds number, Re∗b (as defined in (2.26)).
Furthermore, in figure 11(a,b) we plot the Re∗b dependence of the irreversible mixing
efficiency, η (as defined in (2.27)), and the irreversible diapycnal diffusivity, K∗ρ (as
defined in (2.24)). As in figure 8, and for reference, the times t2d (marked by ‘+’),
t3d (marked by ‘∗’) and t= t2d + 100 (marked by ‘×’) associated with the panels of
figure 7 are also indicated in figure 11(a,b). Note that, while figure 11(a) illustrates
the entire life cycle of HWI and KHI, figure 11(b) only shows data associated with
times subsequent to t3d, after which the flow may be described as three-dimensionally
turbulent.

The aforementioned longevity of three-dimensional turbulent motions in the HWI
compared to KHI is also evident in figure 10(a,b). Despite their earlier vigour
in KHI, the irreversible mixing (M ), turbulent dissipation (ε) and the buoyancy
Reynolds number (Reb) associated with HWI surpass those of KHI at equivalent
times after t2d. Therefore, this long-lived turbulent activity suggests that it is possible
for flows susceptible to HWI to induce non-trivial amounts of mixing associated with
inherently turbulent processes. This suggestion is confirmed by the data presented in
figure 11(a,b).

Although the irreversible mixing associated with the HWI for given Re∗b is less
efficient than the mixing associated with the KHI, through much of the life cycle the
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FIGURE 11. (Colour online) Variation with Re∗b for simulation ‘H’ (white circles) and
simulation ‘K’ (grey circles) of: (a) the irreversible mixing efficiency, η, as defined in
(2.27) for the entire life cycle of HWI and KHI; and (b) the irreversible diapycnal
diffusivity, K∗ρ , as defined in (2.24) for t> t3d. The data corresponding to times t2d (marked
by ‘+’), t3d (marked by ‘∗’) and t = t2d + 100 (marked by ‘×’) are also indicated. The
direction of time evolution is also indicated by arrows in (a).

difference is modest, once the highest Re∗b (and earliest) stage of simulation ‘K’ is
eliminated (as is done in figure 11(b) by including the data associated with t > t3d).
This early, typically very efficient, mixing stage is associated with the large-scale
overturning of the density interface by the primary KHI, which does not arise in the
evolution of the HWI. In this regard, it is very interesting to note that the mixing
efficiency of HWI proceeds in time along a similar trajectory for which the later-time
mixing efficiency η(t > t3d) closely follows the early-time η(t < t3d). This behaviour
differs completely from that of η(t) during the KHI life cycle in which the flow
evolution executes a wide loop in Reb–η space. Furthermore, the KHI exhibits mixing
efficiencies much larger than the canonical value of η6 1/6 (Γ 6 0.2) as proposed by
Osborn (1980), precisely because of this large-scale stirring at relatively early times,
while the HWI behaviour (possibly fortuitously) appears to be much more consistent
with this classical model throughout its turbulent life cycle. A key open question,
therefore, is under what conditions KHI-like overturning or HWI-like scouring might
be typical of real-world mixing processes.

Nevertheless, as is apparent in figure 11(b), once both flows have broken down
into smaller-scale turbulence and after the three-dimensional motions have saturated
(i.e. for t > t3d), the turbulent diapycnal diffusivity K∗ρ (defined in (2.24)) over the
entire turbulent phase is actually rather similar between the two simulations. Indeed,
at the highlighted time t2d + 100 shown in figure 7(c, f ), K∗ρ is actually larger in
simulation ‘H’. Therefore, provided the flow is at sufficiently high Re, the irreversible
mixing associated with HWI involves a qualitatively different picture compared to
the low-Re characteristic ‘wisping’ from interfacial cusps; a mixing that is no longer
dominated by molecular viscous effects. This finding strongly supports the conjecture
that the HWI-induced mixing is geophysically relevant and hence should be considered
as a possibly important route to turbulence in stratified flows.
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map with monotonically increasing brightness, see Green (2011).

3.3. Mixing mechanics and localisation
To gain a more complete understanding of the spatiotemporal structure of the
qualitatively different mixing mechanisms associated with the ‘overturning’ of the
KHI and the ‘scouring’ of the HWI, in figure 12 we plot the time evolution of five
horizontally averaged quantities, i.e. the horizontally averaged buoyancy frequency
N2(z, t), dissipation rate ε(z, t), scalar variance dissipation rate χ(z, t), buoyancy
Reynolds number Reb(z, t) and Cox number C, defined as

N2(z, t)=−Rib
dρ
dz
, ε(z, t)= 2

Re
(sijsij), χ(z, t)= 2

Re Pr
|∇ρ ′|2,

Reb(z, t)= ε(z, t)

νN2(z, t)
, C= Kcox

ρ

κ
= |∇ρ

′|2
(dρ/dz)2

.

 (3.1)

In these expressions, ρ ′ denotes the perturbation from the horizontally averaged
mean density field ρ (i.e. ρ ′(x, t) = ρ(x, t) − ρ(z, t)). The Cox number C is an
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appropriately normalised measure of diapycnal diffusivity, Kcox
ρ (Salehipour & Peltier

2015), as approximated by the formulation of Osborn & Cox (1972). In each panel,
the horizontal time axis is, as usual, shifted to t− t2d for ease of comparison between
the two simulations, with the data from simulation ‘K’ being plotted in the left
column and the data from simulation ‘H’ being plotted in the right column.

The qualitatively different character of the turbulence and ensuing mixing is
immediately apparent in figure 12(a,b), showing N2(z, t). The overturning associated
with the KHI induces a relatively well-mixed region at the midpoint of the flow
bounded by two regions of heightened gradient, while the scouring associated with
the HWI is not able to destroy the fundamentally two-layer character of the density
distribution, and the maximum density gradient clearly remains at its initial location
at the midpoint of the shear layer. Interestingly, the turbulence, characterised by ε
and χ , is for both simulations centred on the midpoint of the shear layer. However,
the KHI has a much more intense and transient ‘burst’ of turbulence intensity spread
over a much broader vertical extent, undoubtedly associated with the breakdown
of the primary overturning billow shown in figure 7(a), while the HWI exhibits
a much longer period of substantial turbulent activity, which is also much more
strongly localised in the vicinity of the primary density interface. This difference in
the duration of the period of intense turbulent activity between the two simulations
reported here is real, since we deliberately choose the (dimensional) advective time
scale d/U0 to be the same in each simulation.

Taken together, the differences between the spatiotemporal distribution of the
stratification and the turbulence lead to major qualitative differences in the properties
of the irreversible mixing, as shown in figure 12(g–j). Although ε is widely spread
vertically for simulation ‘K’, the buoyancy Reynolds number is typically largest at
the midpoint of the shear layer since the buoyancy frequency is in turn subsequently
intensified at the periphery. Furthermore, for simulation ‘K’, Reb decays quite rapidly
in time because ε is elevated only over a relatively short time. Similarly, the ultimate
diapycnal diffusivity (as parametrised by the Cox number C) is most intense for
a relatively short time and in the immediate vicinity of the initial primary density
interface for simulation ‘K’.

On the other hand, the less intense, but more temporally extended, turbulence
associated with the HWI does not disrupt the buoyancy frequency distribution
sufficiently to increase N2 significantly away from the initial density interface.
Therefore, as is apparent in figure 12(h), Reb develops a distinctive twin lobe structure,
with long-lived maxima at the periphery of the shear layer. This long-lived twin-lobed
structure is even more pronounced for the Cox number, demonstrating not only that
flows susceptible to HWI can induce substantial irreversible mixing, but also that
such non-trivial irreversible mixing does not require vigorous precursory stirring of a
‘weak’ density interface (i.e. low Rig(0)) by an overturning billow but rather can arise
due to the cumulative effect of individually smaller-scale eddying motions ‘scouring’
fluid either side of a ‘strong’ density interface.

The more long-lived turbulence induced by HWI as well as its sustained levels of
strong mixing discussed in this paper for flows at high Re should not be attributed to
the slower linear growth rate of the primary HWI (relative to KHI). Based on their
low-Re DNS analyses of KHI and HWI, Smyth & Winters (2003) and Smyth et al.
(2007) found enhanced cumulative mixing due to HWI and thereby associated that
with the slower growth rate of the primary HWI. While this argument may be valid
for quasi-laminar flows dominated by molecular viscous effects, it does not explain
the longevity of our high-Re turbulent mixing events induced by HWI. Note that
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the primary instability saturates at t2d, which obviously differs for HWI and KHI.
Nonetheless, in all the foregoing analysis, we have compensated for this difference by
considering times relative to t2d (i.e. t− t2d). Alternatively, this long-lived and sustained
turbulent mixing of high-Re HWI can be explained by recalling the differences
between HWI and KHI concerning the mechanics and localisation of mixing as
discussed in this section. In particular, the density interface of HWI remains robust
even after the primary wave ‘breaks’, which contrasts with the overturned density
interface of KHI. Furthermore, this robust interface is being ‘scoured’ from above
and below and therefore mixing is displaced away from the interface itself and is
localised in those regions where density stratification is relatively weak. In other
words, turbulence is not required to ‘overturn’ a strong density interface in order
for mixing to occur, and so it is possible for such ‘scouring’-related mixing to be
sustained for a longer period of time.

4. Conclusions
We have considered the transition to turbulence and subsequent irreversible mixing

of a stably stratified parallel shear flow with a sufficiently sharp density interface
centred within the associated shear layer so that it is linearly unstable to counter-
propagating Holmboe wave instabilities (HWI). For comparison, we have considered
another stably stratified parallel shear flow with the same bulk Richardson number Rib
(as defined in (1.3)) but a more diffuse density interface that is linearly unstable to
the classical Kelvin–Helmholtz instability (KHI).

We have shown that the flow Reynolds number has a significant effect not only
on the transition phase to turbulence but also on the spectral properties of the
induced stratified turbulence as well as its mixing properties. At sufficiently high
Re, either one of the two oppositely propagating modes of HWI hosts a clear
emergence of shear-aligned secondary convective instability that play a crucial
role in three-dimensionalisation of the flow. Apparently, this is the same mode
of secondary instability initially discovered by Klaassen & Peltier (1985, 1989) to
govern the transition process in density-stratified Kelvin–Helmholtz billows. The
dominant injection length scale in the spanwise direction, associated with this mode
of secondary instability, decreases as Re increases, leading to a higher number of
prominent streamwise vortex rolls. Furthermore, the growth rate of three-dimensional
secondary instabilities increases nonlinearly as Re increases and appears to become
saturated for Re & 4000.

We have also shown that, at our choice of sufficiently high Re, HWI induces
vigorous turbulence and mixing that is clearly different in character from previous
studies at lower Re (cf. e.g. Smyth & Winters 2003; Smyth et al. 2007). In particular,
the streamwise spectrum of streamwise perturbation kinetic energy reveals a −5/3
power law for scales greater than the Ozmidov scale provided that Re is higher than a
‘transitional’ Reynolds number of Re≈ 4000. This spectral behaviour is in accord with
previous theoretical and numerical studies of stratified turbulence (e.g. Brethouwer
et al. 2007) and is also evident for the turbulent flow produced by high-Re KHI. In
fact the normalised spectra of high-Re KHI- and HWI-induced turbulence become
very similar and almost indistinguishable at later times during the fully developed
stage when scaled by total perturbation kinetic energy. Insofar as irreversible mixing
due to HWI is concerned, as Re increases, the cumulative and instantaneous measures
of mixing are both enhanced significantly and in a nonlinear fashion such that the
high-Re results would not have been predictable on the basis of linear extrapolation
of previous low-Re simulations.
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The high-Re breakdown to turbulence of HWI induces non-trivial instantaneous
irreversible mixing rates that for a given Reb are comparable in magnitude to the
mixing associated with the equivalent fully turbulent flow produced by KHI, but
yet result in a reduced amount of cumulative mixing compared to that due to
KHI. Both HWI and KHI flows at high Re exhibit vigorous irreversible diapycnal
mixing with similar efficiencies and diapycnal diffusivities, particularly after the
complete destruction of the primary KHI billow (see figure 11a,b). Nevertheless,
the total amount of cumulative mixing (or the total rise in BPE) gained throughout
the life cycle of the high-Re HWI is approximately five times less than that of
KHI. This elevated amount of cumulative mixing in KHI should be attributed to
the sudden ‘burst’ of turbulence due to the collapse of the overturned KHI billow.
As a consequence of this abrupt breakdown event, a substantial amount of energy
is exchanged irreversibly from APE into BPE. A similar process is mechanistically
irrelevant to the HWI as the APE reaches a much reduced maximum value compared
to the flow susceptible to the KHI due to the absence of large-scale overturning.
Therefore the energy transfer between APE and BPE occurs at a much more modest
rate, resulting in a reduced rise in BPE.

In fact, the character and spatial structure of the turbulence and mixing are
completely different for the flows susceptible to KHI and HWI. The mixing associated
with the HWI is both much more long-lived than in the flow associated with the
KHI, and also does not lead to a well-mixed middle layer, as the mixing is associated
with multiple smaller ‘scouring’ events on either side of the primary density interface.
Crucially, we have demonstrated that flows susceptible to HWI can be substantial
sources of energetic turbulent mixing if their Reynolds number is sufficiently high,
even when the gradient Richardson number Rig(0)' 0.45 in the vicinity of the density
interface is ‘strong’.

Indeed, this demonstration suggests at least three interesting further avenues for
research. First, since ‘scouring’ has been shown to be a mixing mechanism that is
essentially as efficient and significant as ‘overturning’, it will be natural to investigate
whether any connections can be established with research on unstratified flows
of the relative importance of large-scale ‘engulfment’ to small-scale ‘nibbling’ at
interfaces between turbulent and non-turbulent regions (see e.g. Westerweel et al.
2005)). Second, we have shown by example that ‘strong’ turbulence and mixing
can occur in flows susceptible to HWI at sufficiently high Re, but it would be of
interest to undertake an exhaustive (and computationally exceptionally demanding)
parameter study, varying Re, Rib, Pr and R in realistic ranges to obtain more
complete knowledge of the characteristic energetic and spectral properties of stratified
shear turbulence associated with ‘sharp’ density interfaces. The results of such a
parameter study, especially of flows under strong stratification, should yield further
means of improving the recent multi-parameter characterisation of mixing efficiency
(i.e. η = f (Rib, Reb)) by Salehipour et al. (2016), which relies entirely on the
direct numerical simulation of KHI. Finally, similar studies of HWI may provide
insight into outstanding open questions in the broader field of stratified turbulence
research, where evidence is mounting that layering is generic, characterised by
profoundly anisotropic velocity and density distributions with relatively deep, relatively
well-mixed layers separated by relatively thin and sharp interfaces with relatively high
density gradients (see e.g. Brethouwer et al. 2007)). We hypothesise that ‘scouring’
mixing associated with high-Reynolds-number Holmboe wave instability, which relies
for its initial growth on sharp density interfaces, may be central to the dynamics of
such geophysically important and turbulently layered flows, and it is our intention to
report on our investigation of these three research avenues in due course.
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FIGURE 13. Comparing the effect of grid resolution on the spectral representation of the
perturbation kinetic energy at t= t3d by employing simulations ‘H05’ and ‘H05-hr’ (both
at Re= 500, see table 1). (a) Normalised streamwise spectra of streamwise perturbation
kinetic energy, K̂ ′

x (kx)/K
′

x (see (2.16)). (b) Normalised spanwise spectra of spanwise
perturbation kinetic energy, K̂ ′

y (ky)/K
′

y (see (2.17)). Symbols ‘E’ and ‘@’ mark `O and
`K , respectively.
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Appendix. A note on DNS resolution

The reader is referred to Salehipour et al. (2015) (and the references therein)
for a more detailed discussion regarding the resolution requirements of the DNS
analyses that we have conducted using Nek5000. Nevertheless, here we note that
the perturbation kinetic energy spectra, K̂ ′

x (kx) (see (2.16)) and K̂ ′
y (ky) (see (2.17)),

remain uninfluenced by a significant increase in the spatial resolution.
This is illustrated in figure 13, which compares the spectra at t = t3d after being

normalised by the total perturbation kinetic energy of the spectrum associated with the
streamwise and spanwise directions, respectively. For this purpose, simulations ‘H05’
and ‘H05-hr’ have been employed. These two cases share an identical initial Re of
Re= 500 but the latter case resolves spatial scales approximately five times smaller.

The smallest scale for flows with Pr> 1 is the Batchelor length scale, `B=Pr−1/2`K .
While `K is clearly resolved in simulation ‘H05’ and ‘H05-hr’, `B ∼ 0.35`K is
only resolved in simulation ‘H05-hr’ and is indeed over-resolved. Nonetheless, it is

http://dx.doi.org/10.17863/CAM.699
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generally accepted that a reliable DNS analysis must resolve scales down to 3–6
times the dissipation scale (equal to `B in these cases with Pr> 1), which is respected
consistently in the construction of all DNS cases listed in table 1. The blips at the
tail of the spectrum, evident in figure 13(a), are associated with the cut-off Nyquist
frequency.
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